Although this site was up over 25 years it now soon will be shut down due to administrative reasons.
It will be further available on my new home page www.yvesedel.de


The check matrix of a [70,57,7]4.

For more information see New code parameters from Reed-Solomon subfield codes.

1000000000000323102211120230122030332100120020012130203330332332302020
0100000000000233131020021132320122203230321011032212112002203303200231
0010000000000101030112011232022303322203221132122310120201322132112021
0001000000000301311021233330332003033130210131201112231023233312332120
0000100000000321323132111120103033002003113031133232000101022230111212
0000010000000032132313211112010303300200311303113323200010102223211133
0000001000000121130221332230011321232100222103330203011000112020233102
0000000100000012113022133223001132123210022210333020301100011202022031
0000000010000310003332221131230320113031130203020021213113300021011302
0000000001000202131313203021203110212133232031330210033313133301121312
0000000000100213322111301230200233222023002212101233111333110033202130
0000000000010103011201123202230332220322113212231012020132213201032201
0000000000001223230100133212103111021202130330211313310011022023133223

The prime polynomial used to generate GF(4) is: X2+X+1. The element f=aX+b, a,b in {0,1}, is written as the number a*2+b.


| Some codes | home |